Eine kurze Einführung in die moderne Zeitreihe Definition Eine Zeitreihe ist eine Zufallsfunktion x t eines Arguments t in einer Menge T. Mit anderen Worten, eine Zeitreihe ist eine Familie von Zufallsvariablen. X t-1. X t. X t1. Die allen Elementen in der Menge T entsprechen, wobei T eine abzählbare unendliche Menge sein soll. Definition Eine beobachtete Zeitreihe t t e T o T gilt als Teil einer Realisierung einer Zufallsfunktion x t. Eine unendliche Menge möglicher Verwirklichungen, die beobachtet werden könnten, wird Ensemble genannt. Um die Dinge strenger zu formulieren, ist die Zeitreihe (oder zufällige Funktion) eine reelle Funktion x (w, t) der beiden Variablen w und t mit ww und t T. Wenn wir den Wert von w festlegen. Haben wir eine reelle Funktion x (t w) der Zeit t, die eine Realisierung der Zeitreihen ist. Wenn wir den Wert von t festlegen, haben wir eine Zufallsvariable x (wt). Für einen gegebenen Zeitpunkt gibt es eine Wahrscheinlichkeitsverteilung über x. Somit kann eine Zufallsfunktion x (w, t) entweder als eine Familie von Zufallsvariablen oder als eine Familie von Realisierungen betrachtet werden. Definition Wir definieren die Verteilungsfunktion der Zufallsvariablen w mit t 0 als P o) x (x). Ähnlich können wir die gemeinsame Verteilung für n Zufallsvariablen definieren. Die Punkte, die die Zeitreihenanalyse von gewöhnlichen statistischen Analysen unterscheiden, sind folgende: (1) Die Abhängigkeit von Beobachtungen zu verschiedenen Zeitpunkten spielt eine wesentliche Rolle. Mit anderen Worten, die Reihenfolge der Beobachtungen ist wichtig. In der gewöhnlichen statistischen Analyse wird davon ausgegangen, daß die Beobachtungen voneinander unabhängig sind. (2) Die Domäne von t ist unendlich. (3) Wir müssen eine Schlussfolgerung aus einer Erkenntnis machen. Die Realisierung der Zufallsgröße kann nur einmal zu jedem Zeitpunkt beobachtet werden. In der multivariaten Analyse haben wir viele Beobachtungen über eine endliche Anzahl von Variablen. Dieser kritische Unterschied erfordert die Annahme der Stationarität. Definition Die Zufallsfunktion x t ist streng stationär, wenn alle endlichen Dimensionsverteilungsfunktionen x t gleich bleiben, auch wenn die ganze Gruppe von Punkten t 1. T 2. T n entlang der Zeitachse verschoben wird. Das heißt, wenn für irgendwelche ganzen Zahlen t & sub1; T 2. T n und k. Grafisch könnte man die Realisierung einer streng stationären Reihe als mit nicht nur dem gleichen Pegel in zwei verschiedenen Intervallen abbilden, sondern auch die gleiche Verteilungsfunktion bis hin zu den Parametern, die sie definieren. Die Annahme der Stationarität macht unser Leben einfacher und weniger kostspielig. Ohne Stationarität müssten wir den Prozeß häufig zu jedem Zeitpunkt abtasten, um eine Charakterisierung der Verteilungsfunktionen in der früheren Definition aufzubauen. Stationarität bedeutet, dass wir unsere Aufmerksamkeit auf einige der einfachsten numerischen Funktionen, d. H. Auf die Momente der Verteilungen, beschränken können. Die zentralen Momente sind gegeben durch Definition (i) Der Mittelwert der Zeitreihe t ist d. h. das Moment erster Ordnung. (Ii) Die Autokovarianzfunktion von t ist d. h. das zweite Moment um den Mittelwert. Wenn ts, dann haben Sie die Varianz von x t. Wir wollen die Autokovarianz einer stationären Reihe bezeichnen, wobei k die Differenz zwischen t und s bezeichnet. (Iii) Die Autokorrelationsfunktion (ACF) von t wird verwendet, um die Autokorrelation einer stationären Reihe zu bezeichnen, wobei k die Differenz zwischen t und s bezeichnet. (Iv) Die partielle Autokorrelation (PACF). F kk. Ist die Korrelation zwischen z t und z tk nach Entfernung ihrer gegenseitigen linearen Abhängigkeit von den dazwischenliegenden Variablen z t1. Z t2. Z tk-1. Ein einfacher Weg, die partielle Autokorrelation zwischen z t und z tk zu berechnen, besteht darin, die beiden Regressionen auszuführen und dann die Korrelation zwischen den beiden Restvektoren zu berechnen. Oder, nachdem die Variablen als Abweichung von ihren Mitteln gemessen wurden, kann die partielle Autokorrelation als der LS-Regressionskoeffizient auf zt in dem Modell gefunden werden, wo der Punkt über der Variable anzeigt, dass er als eine Abweichung von seinem Mittel gemessen wird. (V) Die Yule-Walker-Gleichungen liefern eine wichtige Beziehung zwischen den partiellen Autokorrelationen und den Autokorrelationen. Multiplizieren Sie beide Seiten der Gleichung 10 mit z tk-j und nehmen Sie Erwartungen. Dieser Vorgang ergibt die folgende Differenzengleichung in den Autokovarianzen bzw. in den Autokorrelationen. Diese scheinbar einfache Darstellung ist wirklich ein mächtiges Ergebnis. Für j1,2. K können wir das vollständige System von Gleichungen schreiben, bekannt als die Yule-Walker-Gleichungen. Aus der linearen Algebra wissen Sie, dass die Matrix von r s von vollem Rang ist. Daher ist es möglich, die Cramers-Regel sukzessive für k1,2 anzuwenden. Um das System für die partiellen Autokorrelationen zu lösen. Die ersten drei sind Wir haben drei wichtige Ergebnisse auf streng stationäre Serien. Die Implikation ist, dass wir jede endliche Realisierung der Sequenz verwenden können, um den Mittelwert zu schätzen. Zweite . Wenn t streng stationär ist und E t 2 lt dann die Implikation ist, dass die Autokovarianz nur von der Differenz zwischen t und s abhängt, nicht von ihrem chronologischen Zeitpunkt. Wir könnten jedes Paar von Intervallen bei der Berechnung der Autokovarianz verwenden, solange die Zeit zwischen ihnen konstant war. Und wir können jede endliche Realisierung der Daten verwenden, um die Autokovarianzen abzuschätzen. Drittens ist die Autokorrelationsfunktion im Falle einer strengen Stationarität gegeben durch Die Implikation ist, daß die Autokorrelation auch nur von der Differenz zwischen t und s abhängt und wiederum durch eine endliche Realisierung der Daten abgeschätzt werden kann. Wenn unser Ziel darin besteht, Parameter zu schätzen, die die möglichen Realisierungen der Zeitreihen beschreiben, dann ist vielleicht eine strenge Stationarität zu restriktiv. Wenn zum Beispiel der Mittelwert und die Kovarianz von xt konstant sind und unabhängig vom chronologischen Zeitpunkt sind, dann ist es vielleicht nicht wichtig, dass die Verteilungsfunktion für verschiedene Zeitintervalle gleich ist. Definition Eine zufällige Funktion ist im weiten Sinne stationär oder schwach stationär oder stationär im Khinchins-Sinne oder Kovarianz stationär, wenn m 1 (t) m und m 11 (t, s) stationär ist. Strenge Stationarität bedeutet für sich genommen keine schwache Stationarität. Eine schwache Stationarität bedeutet keine strenge Stationarität. Strenge Stationarität mit E t 2 lt bedeutet schwache Stationarität. Ergodische Theoreme beschäftigen sich mit der Frage nach den notwendigen und hinreichenden Bedingungen, um aus einer einzigen Realisierung einer Zeitreihe Schlußfolgerungen zu ziehen. Grundsätzlich geht es darum, schwache Stationarität vorauszusetzen. Theorem Ist t schwach stationär mit mittlerer m und Kovarianzfunktion, so existiert für jedes gegebene e gt 0 und h gt 0 eine Anzahl T o, so dass für alle T gt T o. Wenn und nur wenn diese notwendige und hinreichende Bedingung ist, dass die Autokovarianzen aussterben, wobei in diesem Fall die Stichprobe ein konsistenter Schätzer für das Bevölkerungsmittel ist. Korollar Wenn t mit E tk xt 2 lt für alle t schwach stationär ist und E tk xtx tsk x ts unabhängig von t für irgendeine ganze Zahl s ist, dann genau dann, wenn A eine Konsequenz der Korollarfolge die Annahme ist, dass xtx tk ist Schwach stationär. Das Ergodische Theorem ist nicht mehr als ein Gesetz von großer Zahl, wenn die Beobachtungen korreliert werden. Man könnte an dieser Stelle über die praktischen Implikationen der Stationarität fragen. Die häufigste Anwendung der Verwendung von Zeitreihen-Techniken ist die Modellierung makroökonomischer Daten, sowohl theoretische als auch atheoretische. Als Beispiel für das erstere könnte man ein Multiplikator-Beschleuniger-Modell haben. Damit das Modell stationär ist, müssen die Parameter bestimmte Werte haben. Ein Test des Modells soll dann die relevanten Daten sammeln und die Parameter abschätzen. Wenn die Schätzungen nicht mit der Stationarität übereinstimmen, muss man entweder das theoretische Modell oder das statistische Modell oder beide überdenken. Wir haben jetzt genügend Maschinen, um über die Modellierung von univariaten Zeitreihendaten zu sprechen. Es gibt vier Schritte in dem Prozess. 1. Modellmodelle aus theoretischen und Erfahrungswissen 2. Identifizierung der Modelle anhand der Daten (beobachtete Reihen) 3. Modellierung der Modelle (Schätzung der Modellparameter) 4. Modellprüfung Im vierten Schritt sind wir nicht Zufrieden sind wir wieder zu Schritt eins. Der Prozess ist iterativ, bis eine weitere Überprüfung und Anpassung keine weitere Ergebnisverbesserung ergibt. Schematische Darstellung Einige einfache Operationen umfassen die folgenden: Der Rückschaltoperator Bx tx t-1 Der Vorwärtsoperator Fx tx t1 Der Differenzoperator 1 - B xtxt - x t-1 Der Differenzoperator verhält sich in einer Weise, die mit der Konstanten in einer unendlichen Reihe übereinstimmt . Das heißt, sein Inverses ist die Grenze einer unendlichen Summe. Das heißt, -1 (1-B) -1 1 (1-B) 1BB 2. Der Integrationsoperator S -1 Da es der Inverse des Differenzoperators ist, dient der Integrationsoperator der Konstruktion der Summe. MODELLBAU In diesem Abschnitt bieten wir einen kurzen Überblick über die häufigsten Arten von Zeitreihenmodellen. Ausgehend von den Kenntnissen des Datenerzeugungsprozesses greift eine Klasse von Modellen zur Identifikation und Schätzung aus den folgenden Möglichkeiten auf. Definition Angenommen, Ex t m ist unabhängig von t. Ein Modell wie mit den Merkmalen wird das autoregressive Modell der Ordnung p, AR (p) genannt. Definition Wenn eine zeitabhängige Variable (stochastischer Prozeß) t genügt, dann heißt t die Eigenschaft von Markov. Auf der LHS ist die Erwartung auf die unendliche Geschichte von x t bedingt. Auf der RHS ist es nur auf einen Teil der Geschichte bedingt. Aus den Definitionen wird ein AR (p) - Modell gesehen, um die Markov-Eigenschaft zu erfüllen. Mit Hilfe des Backshift-Operators können wir unser AR-Modell als Theorem schreiben. Eine notwendige und hinreichende Bedingung für das stationäre AR (p) - Modell ist, dass alle Wurzeln des Polynoms außerhalb des Einheitskreises liegen. Beispiel 1 Betrachten Sie die AR (1) Die einzige Wurzel von 1 - f 1 B 0 ist B 1 f 1. Voraussetzung für die Stationarität ist die. Wenn dann die beobachtete Reihe sehr frenetisch erscheinen wird. Z. B. Wobei der weiße Rauschterm eine Normalverteilung mit einem Nullmittelwert und einer Varianz von Eins aufweist. Die Beobachtungen wechseln Schild mit fast jeder Beobachtung. Wenn auf der anderen Seite, dann wird die beobachtete Reihe viel glatter sein. In dieser Reihe neigt eine Beobachtung dazu, über 0 zu sein, wenn ihr Vorgänger über Null war. Die Varianz von e t ist s e 2 für alle t. Die Varianz von xt. Wenn es null bedeutet, ist gegeben durch Da die Reihe stationär ist, können wir schreiben. Die Autokovarianzfunktion einer AR (1) - Serie ist also ohne Verlust der Allgemeingültigkeit m 0. Um zu sehen, wie das bei den AR-Parametern aussieht, machen wir von der Tatsache Gebrauch, daß wir xt wie folgt schreiben können: Multiplizieren mit x Tk und nehmen Erwartungen Beachten Sie, dass die Autokovarianzen sterben, wie k wächst. Die Autokorrelationsfunktion ist die Autokovarianz geteilt durch die Varianz des weißen Rauschterms. Oder, . Mit Hilfe der früheren Yule-Walker-Formeln für die partiellen Autokorrelationen haben wir für ein AR (1) die Autokorrelationen exponentiell abgestorben und die partiellen Autokorrelationen weisen eine Spike bei einer Verzögerung auf und sind danach null. Beispiel 2 Betrachten Sie das AR (2) Das zugehörige Polynom im Lag-Operator. Die Wurzeln konnten unter Verwendung der quadratischen Formel gefunden werden. Die Wurzeln sind Wenn die Wurzeln real sind und als Folge wird die Serie exponentiell in Reaktion auf einen Schock abnehmen. Wenn die Wurzeln komplex sind und die Reihe als gedämpfte Vorzeichenwelle erscheinen wird. Der Stationaritätssatz legt die folgenden Bedingungen für die AR-Koeffizienten fest Die Autokovarianz für einen AR (2) - Prozeß mit Nullmittelwert wird durch die Varianz von xt dividiert Durch die Varianz von xt ergibt sich die Autokorrelationsfunktion Da wir schreiben können Ähnlich für die zweite und dritte Autokorrelation Die andere Autokorrelationen werden rekursiv gelöst. Ihr Muster wird durch die Wurzeln der linearen Differenzgleichung zweiter Ordnung geregelt. Wenn die Wurzeln reell sind, werden die Autokorrelationen exponentiell abnehmen. Wenn die Wurzeln komplex sind, erscheinen die Autokorrelationen als gedämpfte Sinuswelle. Unter Verwendung der Yule-Walker-Gleichungen sind die partiellen Autokorrelationen wieder, die Autokorrelationen sterben langsam ab. Die partielle Autokorrelation hingegen ist sehr charakteristisch. Es hat Spikes an ein und zwei Lags und ist danach null. Theorem Ist x t ein stationärer AR (p) - Prozeß, so kann er äquivalent als lineares Filtermodell geschrieben werden. Das heißt, das Polynom im Rückschaltoperator kann invertiert werden und das AR (p) als ein gleitender Durchschnitt von unendlicher Ordnung stattdessen geschrieben werden. Beispiel Angenommen, z t ist ein AR (1) Prozess mit Null-Mittelwert. Was für die aktuelle Periode gilt, muss auch für vorherige Perioden gelten. Durch rekursive Substitution können wir quadratisch beide Seiten schreiben und Erwartungen nehmen, die rechte Seite verschwindet als k seit f lt 1. Daher konvergiert die Summe zu zt im quadratischen Mittel. Wir können das AR (p) - Modell als linearen Filter umschreiben, den wir als stationär kennen. Die Autokorrelationsfunktion und die partielle Autokorrelation allgemein Angenommen, dass eine stationäre Reihe z t mit mittlerem Nullpunkt als autoregressiv bekannt ist. Die Autokorrelationsfunktion eines AR (p) wird gefunden, indem die Erwartungen und die Durchdringung durch die Varianz von zt erfüllt werden. Dies besagt, daß rk eine Linearkombination der vorherigen Autokorrelationen ist. Wir können dies bei der Anwendung der Cramers-Regel auf (i) beim Lösen von fkk verwenden. Insbesondere können wir sehen, dass diese lineare Abhängigkeit f kk 0 für k gt p bewirkt. Diese Besonderheit der Autoregressive-Serie wird sehr nützlich sein, wenn es um die Identifizierung einer unbekannten Serie kommt. Wenn Sie entweder MathCAD oder MathCAD Explorer haben, dann können Sie experimentieren interactivley mit einigen der AR (p) Ideen präsentiert hier. Moving Average Models Betrachten Sie ein dynamisches Modell, in dem die Reihe von Interesse hängt nur von einem Teil der Geschichte des weißen Rausch Begriff. Schematisch kann dies als Definition dargestellt werden Definition Angenommen, t ist eine unkorrelierte Folge von i. i.d. Zufallsvariablen mit null Mittelwert und endlicher Varianz. Dann ist ein gleitender Durchschnittsprozess der Ordnung q, MA (q) gegeben durch Theorem: Ein gleitender Durchschnittsprozess ist immer stationär. Beweis: Anstatt mit einem allgemeinen Beweis zu beginnen, machen wir es für einen bestimmten Fall. Angenommen, z t ist MA (1). Dann. Natürlich hat ein t null mittlere und endliche Varianz. Der Mittelwert von zt ist stets Null. Die Autokovarianzen werden gegeben durch Sie können sehen, dass der Mittelwert der Zufallsvariablen nicht von der Zeit in irgendeiner Weise abhängt. Sie können auch sehen, dass die Autokovarianz hängt nur von den Offset s, nicht auf, wo in der Reihe, die wir beginnen. Wir können das gleiche Resultat allgemeiner mit dem beginnen, das die alternierende gleitende mittlere Darstellung hat. Man betrachte zunächst die Varianz von zt. Durch rekursive Substitution können Sie zeigen, dass dies gleich der Summe ist, die wir kennen, um eine konvergente Reihe zu sein, so dass die Varianz endlich ist und von der Zeit unabhängig ist. Die Kovarianzen sind z. B. Sie können auch sehen, dass die Auto-Kovarianzen nur von den relativen Zeitpunkten abhängen, nicht vom chronologischen Zeitpunkt. Unsere Schlussfolgerung ist, dass ein MA () - Prozess stationär ist. Für den allgemeinen MA (q) - Prozeß ist die Autokorrelationsfunktion gegeben durch Die partielle Autokorrelationsfunktion stirbt glatt ab. Sie können dies sehen, indem Sie den Prozess invertieren, um einen AR () - Prozess zu erhalten. Wenn Sie entweder MathCAD oder MathCAD Explorer haben, können Sie interaktiv mit einigen der hier vorgestellten MA (q) Ideen experimentieren. Mixed Autoregressive - Moving Average Modelle Definition Angenommen, t ist eine unkorrelierte Folge von i. i.d. Zufallsvariablen mit null Mittelwert und endlicher Varianz. Dann ist ein autoregressiver, gleitender Durchschnittsprozess der Ordnung (p, q), ARMA (p, q) gegeben. Die Wurzeln des autoregressiven Operators müssen alle außerhalb des Einheitskreises liegen. Die Anzahl der Unbekannten ist pq2. Die p und q sind offensichtlich. Die 2 enthält die Ebene des Prozesses, m. Und die Varianz des weißen Rauschterms sa 2. Angenommen, wir kombinieren unsere AR - und MA-Darstellungen so, dass das Modell und die Koeffizienten so normiert sind, dass bo1. Dann wird diese Darstellung als ARMA (p, q) bezeichnet Wurzeln von (1) liegen alle außerhalb des Einheitskreises. Angenommen, die y t werden als Abweichungen vom Mittelwert gemessen, so dass wir ein o fallen lassen können. Dann wird die Autokovarianz-Funktion abgeleitet, wenn jgtq dann die MA-Begriffe ausfallen in Erwartung zu geben, Das ist, die Autokovarianz-Funktion sieht aus wie eine typische AR für Lags nach q sie sterben glatt nach q, aber wir können nicht sagen, wie 1,2,133, Q aussehen wird. Wir können auch die PACF für diese Klasse von Modell zu untersuchen. Das Modell kann geschrieben werden. Wir können dies als MA (inf) - Prozeß schreiben, der nahelegt, daß die PACFs langsam aussterben. Mit einiger Arithmetik konnten wir zeigen, dass dies nur nach den ersten p Spikes des AR-Teils geschieht. Empirisches Gesetz Tatsächlich kann eine stationäre Zeitreihe durch p 2 und q 2 repräsentiert werden. Wenn Ihr Unternehmen eine gute Annäherung an die Realität und die Güte der Anpassung liefern soll, ist Ihr Kriterium dann ein verschwenderisches Modell bevorzugt. Wenn Ihr Interesse prädiktive Effizienz ist, dann ist das sparsame Modell bevorzugt. Experimentieren Sie mit den ARMA Ideen, die oben mit einem MathCAD Arbeitsblatt. Autoregressive Integrate Moving Average Modelle MA Filter AR Filter Filter integrieren Manchmal ist der Prozess oder die Serie, die wir modellieren wollen, nicht stationär in Ebenen. Aber es könnte stationär sein in, sagen wir, erste Unterschiede. Das heißt, in seiner ursprünglichen Form sind die Autokovarianzen für die Reihe nicht unabhängig vom chronologischen Zeitpunkt. Wenn wir jedoch eine neue Serie konstruieren, die die ersten Unterschiede der ursprünglichen Reihe ist, so erfüllt diese neue Reihe die Definition der Stationarität. Dies ist oft der Fall mit wirtschaftlichen Daten, die sehr trendorientiert ist. Definition Nehmen wir an, daß zt nicht stationär ist, aber zt - zt-1 die Definition der Stationarität erfüllt. Auch bei, das weiße Rauschen Begriff hat endlichen Mittelwert und Varianz. Wir können das Modell als Dies ist ein ARIMA (p, d, q) - Modell zu schreiben. P identifiziert die Reihenfolge des AR-Operators, d identifiziert das Einschalten. Q identifiziert die Reihenfolge des MA-Operators. Liegen die Wurzeln von f (B) außerhalb des Einheitskreises, so können wir ARIMA (p, d, q) als lineares Filter umschreiben. D. h. Kann er als MA () geschrieben werden. Wir behalten uns die Diskussion über die Erkennung von Einheitswurzeln für einen anderen Teil der Vorlesungsunterlagen vor. Man betrachte ein dynamisches System mit x t als Eingangsreihe und y t als Ausgangsreihe. Schematisch haben wir Diese Modelle sind eine diskrete Analogie der linearen Differentialgleichungen. Wir nehmen die folgende Beziehung an, wobei b eine reine Verzögerung anzeigt. Denken Sie daran, dass (1-B). Wenn das Koeffizientenpolynom auf yt invertiert werden kann, dann kann das Modell geschrieben werden, da V (B) als Impulsantwortfunktion bekannt ist. Wir werden diese Terminologie wieder in unserer späteren Diskussion der Vektor autoregressive kommen. Kointegrations - und Fehlerkorrekturmodellen. MODEL-IDENTIFIKATION Nachdem man sich für eine Klasse von Modellen entschieden hat, muss man nun die Reihenfolge der Prozesse identifizieren, die die Daten erzeugen. Das heißt, man muss die Vermutungen hinsichtlich der Reihenfolge der AR - und MA-Prozesse, die die stationäre Serie treiben, gut abschätzen. Eine stationäre Serie ist vollständig durch ihre Mittelwerte und Autokovarianzen charakterisiert. Aus analytischen Gründen arbeiten wir meistens mit Autokorrelationen und partiellen Autokorrelationen. Diese beiden grundlegenden Werkzeuge haben einzigartige Muster für stationäre AR - und MA-Prozesse. Man könnte Beispielabschätzungen der Autokorrelation und partiellen Autokorrelationsfunktionen berechnen und sie mit den tabellierten Ergebnissen für Standardmodelle vergleichen. Beispiel Autokovarianz Funktion Stichprobe Autokorrelationsfunktion Die Beispielteilautokorrelationen werden die Autokorrelationen verwenden und partielle Autokorrelationen sind im Prinzip einfach. Angenommen, wir haben eine Folge zt. Mit Nullmittelwert, der AR (1) ist. Wenn wir die Regression von z t2 auf z t1 und z t ausführen würden, würden wir erwarten, daß der Koeffizient auf zt nicht von Null verschieden ist, da diese partielle Autokorrelation Null sein sollte. Andererseits sollten die Autokorrelationen für diese Reihe exponentiell abnehmen, um die Verzögerungen zu erhöhen (siehe das obige Beispiel AR (1)). Angenommen, die Serie ist wirklich ein gleitender Durchschnitt. Die Autokorrelation sollte überall Null sein, aber bei der ersten Verzögerung. Die partielle Autokorrelation sollte exponentiell absterben. Sogar von unserem sehr flüchtigen Rummel durch die Grundlagen der Zeitreihenanalyse wird deutlich, dass es eine Dualität zwischen AR - und MA-Prozessen gibt. Diese Dualität kann in der folgenden Tabelle zusammengefasst werden. Einführung in ARIMA: Nichtseasonalmodelle ARIMA (p, d, q) Prognose der Gleichung: ARIMA-Modelle sind in der Theorie die allgemeinste Klasse von Modellen zur Prognose einer Zeitreihe (Falls notwendig) 8220 stationary8221, möglicherweise in Verbindung mit nichtlinearen Transformationen, wie etwa Protokollierung oder Abscheidung (falls erforderlich). Eine Zufallsvariable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Reihe hat keinen Trend, ihre Variationen um ihren Mittelwert haben eine konstante Amplitude, und sie wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen Zufallszeitmuster sehen immer im statistischen Sinne gleich aus. Die letztgenannte Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder daß ihr Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieser Form kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn eines offensichtlich ist) könnte ein Muster einer schnellen oder langsamen mittleren Reversion oder einer sinusförmigen Oszillation oder eines schnellen Wechsels im Vorzeichen sein , Und es könnte auch eine saisonale Komponente. Ein ARIMA-Modell kann als ein 8220filter8221 betrachtet werden, der versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Vorhersagegleichung für eine stationäre Zeitreihe ist eine lineare Gleichung (d. H. Regressionstyp), bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und oder Verzögerungen der Prognosefehler bestehen. Das heißt: Vorhergesagter Wert von Y eine Konstante undeine gewichtete Summe aus einem oder mehreren neuen Werten von Y und einer gewichteten Summe aus einem oder mehreren neuen Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, handelt es sich um ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit einer Standard-Regressions-Software ausgestattet werden kann. Beispielsweise ist ein autoregressives Modell erster Ordnung (8220AR (1) 8221) für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt) verzögert ist. Wenn einige der Prädiktoren Verzögerungen der Fehler sind, handelt es sich bei einem ARIMA-Modell nicht um ein lineares Regressionsmodell, da es keine Möglichkeit gibt, 8220last period8217s error8221 als eine unabhängige Variable festzulegen: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen von model8217s keine linearen Funktionen der Koeffizienten sind. Obwohl es sich um lineare Funktionen der vergangenen Daten handelt. Daher müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) abgeschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Die Verzögerungen der stationären Reihe in der Prognose-Gleichung werden als autoregressiveQuot-Terme bezeichnet, die Verzögerungen der Prognosefehler werden als mittlere Mittelwert-Terme bezeichnet und eine Zeitreihe, die differenziert werden muß, um stationär gemacht zu werden, wird als eine integrierte quotierte Version einer stationären Reihe bezeichnet. Random-walk und random-trend Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA Modellen. Ein nicht seasonales ARIMA-Modell wird als ein quotarIMA-Modell (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten Nicht-Seasonal-Differenzen und q die Anzahl der verzögerten Prognosefehler ist Die Vorhersagegleichung. Die Vorhersagegleichung ist wie folgt aufgebaut. Zuerst bezeichne y die d - te Differenz von Y. Das bedeutet, daß die zweite Differenz von Y (der Fall d2) nicht die Differenz von 2 Perioden ist. Es ist vielmehr die erste Differenz der ersten Differenz. Was das diskrete Analogon einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe anstatt ihres lokalen Takts. In Bezug auf y. Ist die allgemeine Prognosegleichung: Hier sind die gleitenden Durchschnittsparameter (9528217s) so definiert, daß ihre Vorzeichen in der Gleichung negativ sind, und zwar nach der Konvention von Box und Jenkins. Einige Autoren und Software (einschließlich der Programmiersprache R) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt werden, gibt es keine Mehrdeutigkeit, aber es ist wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden dort die Parameter mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnt man die Reihenfolge der Differenzierung zu bestimmen (D) Notwendigkeit, die Serie zu stationarisieren und die Brutto-Merkmale der Saisonalität zu beseitigen, möglicherweise in Verbindung mit einer variationsstabilisierenden Transformation, wie beispielsweise Protokollierung oder Entleerung. Wenn Sie an diesem Punkt anhalten und voraussagen, dass die differenzierten Serien konstant sind, haben Sie lediglich ein zufälliges oder zufälliges Trendmodell platziert. Die stationäre Reihe kann jedoch weiterhin autokorrelierte Fehler aufweisen, was nahe legt, daß in der Vorhersagegleichung auch einige Anzahl von AR-Terme (p 8805 1) und einige MA-MA-Terme (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die für eine gegebene Zeitreihe am besten sind, werden in späteren Abschnitten der Notizen (deren Links oben auf dieser Seite sind), aber eine Vorschau von einigen der Typen erörtert Von nicht-saisonalen ARIMA-Modellen, die üblicherweise angetroffen werden, ist unten angegeben. ARIMA (1,0,0) Autoregressives Modell erster Ordnung: Wenn die Serie stationär und autokorreliert ist, kann sie möglicherweise als ein Vielfaches ihres eigenen vorherigen Wertes plus einer Konstante vorhergesagt werden. Die Prognose-Gleichung ist in diesem Fall 8230, die Y auf sich selbst zurückgeblieben um eine Periode zurückgeblieben ist. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann würde der konstante Term nicht eingeschlossen werden. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell ein Mittelrücksetzverhalten, bei dem der nächste Periodenblockwert 981 1 mal als vorhergesagt werden sollte Weit weg vom Durchschnitt, wie dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelwert-Wiederherstellungsverhalten mit einer Veränderung von Vorzeichen, d. h. es sagt auch voraus, daß Y unterhalb der mittleren nächsten Periode liegt, wenn sie über dem Mittel dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)), würde es auch einen Yt-2-Term auf der rechten Seite geben, und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten kann ein ARIMA (2,0,0) - Modell ein System beschreiben, dessen mittlere Reversion sinusförmig oszillierend erfolgt, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Weg: Wenn die Reihe Y nicht stationär ist, ist das einfachste Modell für sie ein zufälliges Wandermodell, das als Grenzfall eines AR (1) - Modells betrachtet werden kann, in dem die autoregressive Koeffizient ist gleich 1, dh eine Reihe mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann folgendermaßen geschrieben werden: wobei der konstante Term die mittlere Periodenperiodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein No-Intercept-Regressionsmodell angepasst werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es nur einen nicht sonderbaren Unterschied und einen konstanten Term enthält, wird er als quotarima (0,1,0) - Modell mit constant. quot klassifiziert. Das random-walk-ohne - driftmodell wäre ein ARIMA (0,1, 0) - Modell ohne konstantes ARIMA (1,1,0) differenziertes autoregressives Modell erster Ordnung: Wenn die Fehler eines Zufallswegmodells autokorreliert werden, kann das Problem möglicherweise durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung - - ie Durch Rückgang der ersten Differenz von Y auf sich selbst verzögert um eine Periode. Dies würde die folgende Vorhersagegleichung ergeben, die umgeordnet werden kann: Dies ist ein autoregressives Modell erster Ordnung mit einer Ordnung der Nichtsaisonaldifferenzierung und einem konstanten Term - d. e. Ein ARIMA (1,1,0) - Modell. ARIMA (0,1,1) ohne konstante einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem Random-Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Es sei daran erinnert, dass für einige nichtstationäre Zeitreihen (z. B. diejenigen, die geräuschschwankungen um einen langsam variierenden Mittelwert aufweisen) das Zufallswegmodell nicht ebenso gut funktioniert wie ein gleitender Durchschnitt von vergangenen Werten. Mit anderen Worten, anstatt die letzte Beobachtung als Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt vergangener Werte, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl mathematisch äquivalenter Formen geschrieben werden. Von denen eine die sogenannte 8220-Fehlerkorrektur8221-Form ist, in der die vorhergehende Prognose in der Richtung ihres Fehlers angepasst wird: Weil e t-1 Y t-1 - 374 t-1 per Definition umgeschrieben werden kann : Es handelt sich um eine ARIMA (0,1,1) - konstante Vorhersagegleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung durch Angabe als ARIMA (0,1,1) - Modell ohne passen Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Denken Sie daran, dass im SES-Modell das durchschnittliche Alter der Daten in den 1-Periodenprognosen 1 945 beträgt, was bedeutet, dass sie tendenziell hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückbleiben werden. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA-Modells (0,1,1) ohne Konstante 1 (1 - 952 1) ist. Wenn beispielsweise 952 1 0,8 beträgt, ist das Durchschnittsalter 5. Da sich 952 1 1 nähert, wird das ARIMA-Modell (0,1,1) ohne Konstante zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Ansätze 0 wird es ein random-walk-ohne-Drift-Modell. What8217s der beste Weg, um für Autokorrelation zu korrigieren: Hinzufügen von AR-Begriffe oder Hinzufügen von MA-Begriffen In den vorherigen beiden Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Fußmodell auf zwei verschiedene Arten behoben: durch Hinzufügen eines Verzögerungswertes der differenzierten Reihe Auf die Gleichung oder das Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz am besten ist Eine Regel für diese Situation, die später noch ausführlicher diskutiert wird, besteht darin, dass die positive Autokorrelation normalerweise am besten durch Hinzufügen eines AR-Terms zum Modell behandelt wird und negative Autokorrelation in der Regel am besten durch Hinzufügen eines MA-Semester. In der Wirtschafts - und Wirtschaftszeitreihe entsteht häufig eine negative Autokorrelation als Artefakt der Differenzierung. (Im allgemeinen differenziert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation bewirken.) Daher wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Begriff begleitet wird, häufiger verwendet als ein ARIMA (1,1,0) - Modell. ARIMA (0,1,1) mit konstanter einfacher exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell gewinnen Sie tatsächlich etwas Flexibilität. Zuerst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor von mehr als 1 in einem SES-Modell, das nach dem SES-Modellanpassungsverfahren üblicherweise nicht zulässig ist. Zweitens haben Sie die Möglichkeit, einen konstanten Begriff in das ARIMA-Modell aufzunehmen, wenn Sie es wünschen, um einen durchschnittlichen Trend, der nicht Null ist, abzuschätzen. Das Modell ARIMA (0,1,1) mit Konstante hat die Vorhersagegleichung: Die Ein-Perioden-Prognosen aus diesem Modell sind qualitativ denjenigen des SES-Modells ähnlich, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise a ist (Deren Neigung gleich mu ist) und nicht eine horizontale Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare Exponentialglättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei nicht-sauren Differenzen in Verbindung mit MA-Begriffen verwenden. Die zweite Differenz einer Folge Y ist nicht einfach die Differenz von Y und selbst von zwei Perioden verzögert, sondern sie ist die erste Differenz der ersten Differenz - i. e. Die Änderung in der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Yt - Yt - 1) - (Yt - 1 - Yt - 2) Yt - 2Yt - 1Yt - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie mißt zu einem gegebenen Zeitpunkt die Quota-Beschleunigung quot oder quotvequot in der Funktion. Das ARIMA (0,2,2) - Modell ohne Konstante sagt voraus, daß die zweite Differenz der Reihe eine lineare Funktion der letzten beiden Prognosefehler ist, die umgeordnet werden können: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten. Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein spezieller Fall. Es verwendet exponentiell gewichtete gleitende Mittelwerte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Reihe abzuschätzen. Die Langzeitprognosen von diesem Modell konvergieren zu einer Geraden, deren Steigung von dem durchschnittlichen Trend abhängt, der gegen Ende der Reihe beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte lineare Exponentialglättung. Dieses Modell ist in den begleitenden Dias auf ARIMA-Modellen dargestellt. Es extrapoliert die lokale Tendenz am Ende der Serie, sondern flacht es auf längere Prognose Horizonte, um eine Notiz von Konservatismus, eine Praxis, die empirische Unterstützung hat einzuführen. Siehe den Artikel auf quotWarum die Damped Trend Werke von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, bei Modellen zu bleiben, bei denen mindestens einer von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) anzubringen, da dies zu Überbeanspruchungen führen kann Die in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen näher erläutert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen lassen sich einfach in einer Tabellenkalkulation implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte von ursprünglichen Zeitreihen und vergangenen Werten der Fehler bezieht. So können Sie eine ARIMA-Prognosekalkulation einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorhergehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in Zellen anderswo auf der Kalkulationstabelle gespeichert sind. Moving Average Processes Wie beim (smash): begin begin text Yt amp text mu varepsilont theta1 Varepsilon ldots thetaq varepsilon amp mu text varepsilont theta1 text varepsilon ldots thetaq text varepsilon amp mu Ende (smash) Autocovariances begin begin gammaj amp text links (Yt-mu) (Y - mu) rechts amp text groß (varepsilont theta1varepsilon ldots thetaq varepsilon) amp hspace mal (varepsilon theta1varepsilon ldots thetaq varepsilon) groß. End end Für (smash). Die quadratischen Terme führen zu ungleichen Erwartungen, während die Kreuzprodukte zu null Erwartungen führen: smash varepsilon2t theta21 text varepsilon2 ldots theta2q text varepsilon2 left (1 sum q theta2jright) sigma2. (Smash) Autokovarianzen beginnen beginnen gammaj amp thetajtext varepsilon2 theta theta1 text varepsilon2 amp hspace theta theta2 text varepsilon2 ldots theta theta text varepsilon2 amp (thetaj theta theta1 theta theta2 ldots thetaqtheta) sigma2. Ende Die Autokovarianzen können prägnant als Anfangsanfang angegeben werden gammaj amp begin (thetajtheta0 theta theta1 theta theta2 ldots thetaqtheta) sigma2 amp text j 0, 1, ldots, q 0 amp text j gt q. End end end (smash) Autokorrelationen
No comments:
Post a Comment